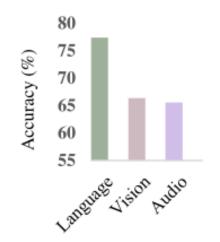
Decoupled Multimodal Distilling for Emotion Recognition

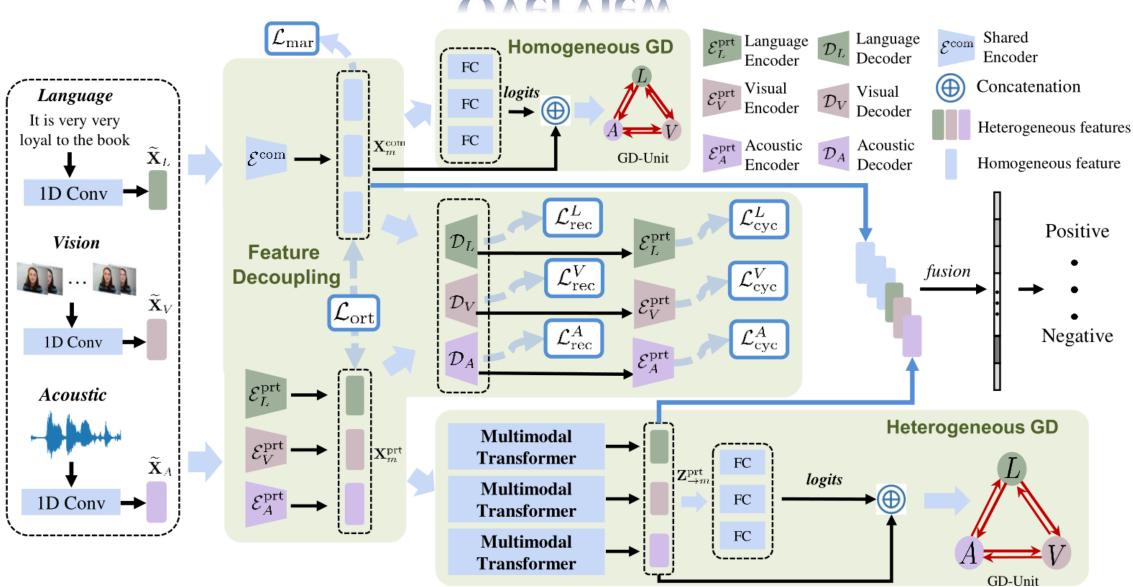
Yong Li, Yuanzhi Wang, Zhen Cui*
PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional
Information of Ministry of Education, School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing, China.

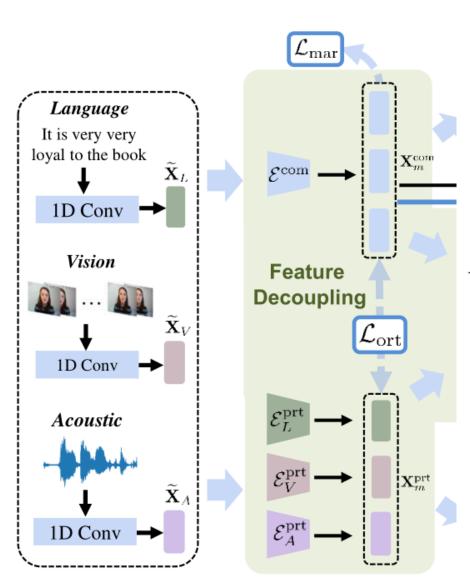
{yong.li, yuanzhiwang, zhen.cui}@njust.edu.cn

2023. 4. 20 • ChongQing

- CVPR 2023




Motivation



(a) Unimodal Accuracy

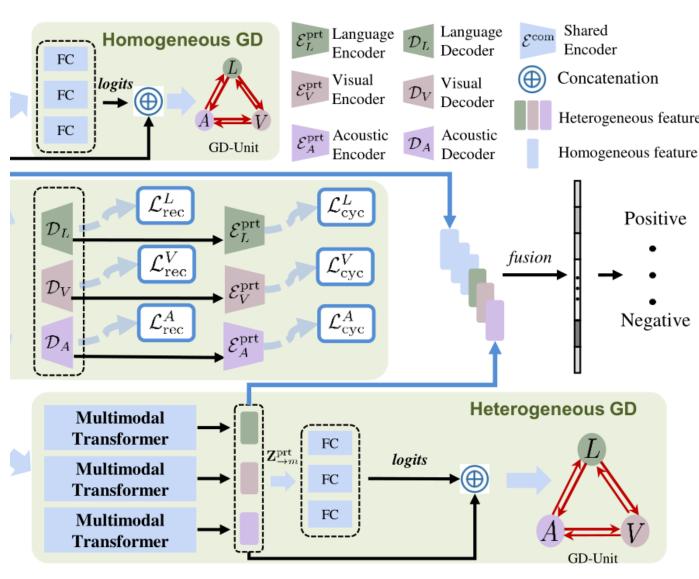
The intrinsic heterogeneities among different modalities still perplex us and increase the difficulty of robust multimodal representation learning

Overview

Method

$$\mathbf{X}_{m}^{\text{com}} = \mathcal{E}^{\text{com}}(\widetilde{\mathbf{X}}_{m}), \mathbf{X}_{m}^{\text{prt}} = \mathcal{E}_{m}^{\text{prt}}(\widetilde{\mathbf{X}}_{m}). \tag{1}$$

$$\widetilde{\mathbf{X}}_{m} \in \mathbb{R}^{T_{m} \times d_{m}}, \text{ where } m \in \{L, V, A\}$$


$$\mathcal{L}_{\text{mar}} = 1 \quad \sum_{m \in \mathcal{M}} (\mathbf{X}_{m}, \mathbf{X}_{m}^{\text{com}}, \mathbf{X}_{m}^{\text{com}}) + \mathbf{X}_{m}^{\text{com}} \mathbf{X}_{m}$$

$$\frac{1}{|S|} \sum_{(i,j,k)\in S} \max(0, \alpha - \cos(\mathbf{X}_{m[i]}^{\text{com}}, \mathbf{X}_{m[j]}^{\text{com}}) + \cos(\mathbf{X}_{m[i]}^{\text{com}}, \mathbf{X}_{m[k]}^{\text{com}})),$$

(4)

$$\mathcal{L}_{\text{ort}} = \sum_{m \in \{L, V, A\}} \cos(\mathbf{X}_m^{\text{com}}, \mathbf{X}_m^{\text{prt}}). \tag{5}$$

Method

$$\mathcal{L}_{\text{rec}} = \|\widetilde{\mathbf{X}}_m - \mathcal{D}_m([\mathbf{X}_m^{\text{com}}, \mathbf{X}_m^{\text{prt}}])\|_F^2. \tag{2}$$

Heterogeneous features
$$\mathcal{L}_{\text{cyc}} = \|\mathbf{X}_m^{\text{prt}} - \mathcal{E}_m^{\text{prt}}(\mathcal{D}_m([\mathbf{X}_m^{\text{com}}, \mathbf{X}_m^{\text{prt}}]))\|_F^2.$$
 (3)

$$\mathcal{L}_{dec} = \mathcal{L}_{rec} + \mathcal{L}_{cyc} + \gamma (\mathcal{L}_{mar} + \mathcal{L}_{ort}), \tag{6}$$

$$\zeta_{:j} = \sum_{v_i \in \mathcal{N}(v_j)} w_{i \to j} \times \epsilon_{i \to j}, \tag{7}$$

$$w_{i\to j} = g([[f(\mathbf{X}_i, \theta_1), \mathbf{X}_i], [f(\mathbf{X}_j, \theta_1), \mathbf{X}_j]], \theta_2), \quad (8)$$

$$\mathcal{L}_{dtl} = \|\mathbf{W} \odot \mathbf{E}\|_1, \tag{9}$$

$$\mathbf{Z}_{L \to V}^{\text{prt}} = \text{softmax}(\frac{\mathbf{Q}_V \mathbf{K}_L^{\top}}{\sqrt{d}}) \mathbf{V}_L, \tag{10}$$

$$\mathcal{L}_{total} = \mathcal{L}_{task} + \lambda_1 \mathcal{L}_{dec} + \lambda_2 \mathcal{L}_{dtl}, \tag{11}$$

Table 1. Comparison on CMU-MOSI dataset. **Bold** is the best.

Methods	Setting	ACC ₇ (%)	ACC_2 (%)	F1 (%)
EF-LSTM		33.7	75.3	75.2
LF-LSTM		35.3	76.8	76.7
TFN [33]		32.1	73.9	73.4
LMF [14]		32.8	76.4	75.7
MFM [29]		36.2	78.1	78.1
RAVEN [30]	Alianad	33.2	78.0	76.6
MCTN [26]	Aligned	35.6	79.3	79.1
MulT [28]		40.0	83.0	82.8
PMR [17]		40.6	83.6	83.4
DMD (Ours)		41.4	84.5	84.4
MISA [7]*		42.3	83.4	83.6
FDMER [32]*	Aligned	44.1	84.6	84.7
DMD (Ours)*		45.6	86.0	86.0
EF-LSTM		31.0	73.6	74.5
LF-LSTM		33.7	77.6	77.8
RAVEN [30]	Unaligned	31.7	72.7	73.1
MCTN [26]		32.7	75.9	76.4
MulT [28]		39.1	81.1	81.0
PMR [17]		40.6	82.4	82.1
MICA [13]		40.8	82.6	82.7
DMD (Ours)		41.9	83.5	83.5

^{*} means the input language features are BERT-based.

Table 2. Comparison on CMU-MOSEI dataset. **Bold** is the best.

Methods	Setting	ACC ₇ (%)	ACC_2 (%)	F1 (%)
EF-LSTM		47.4	78.2	77.9
LF-LSTM		48.8	80.6	80.6
Graph-MFN [36]		45.0	76.9	77.0
RAVEN [30]	Alignad	50.0	79.1	79.5
MCTN [26]	Aligned	49.6	79.8	80.6
MulT [28]		51.8	82.5	82.3
PMR [17]		52.5	83.3	82.6
DMD (Ours)		53.7	85.0	84.9
MISA [7]*		52.2	85.5	85.3
FDMER [32]*	Aligned	54.1	86.1	85.8
DMD (Ours)*		54.5	86.6	86.6
EF-LSTM		46.3	76.1	75.9
LF-LSTM		48.8	77.5	78.2
RAVEN [30]	Unaligned	45.5	75.4	75.7
MCTN [26]		48.2	79.3	79.7
MulT [28]		50.7	81.6	81.6
PMR [17]		51.8	83.1	82.8
MICA [13]		52.4	83.7	83.3
DMD (Ours)		54.6	84.8	84.7

^{*} means the input language features are BERT-based.

Table 3. Ablation study of the key components in DMD.

Dataset	FD	HomoGD	CA	HeteroGD	ACC_7	F1_
MOSI	√	√	√	✓	41.9	83.5
	✓	\checkmark	\checkmark	×	38.8	81.1
	✓	\checkmark	\times	\checkmark	37.5	80.6
	✓	\checkmark	\times	×	37.2	80.8
	✓	×	\times	×	34.7	79.3
	×	×	\times	×	32.4	79.0
MOSEI	√	√	√	√	54.6	84.7
	✓	\checkmark	\checkmark	×	53.2	84.1
	✓	\checkmark	\times	\checkmark	52.4	83.8
	✓	\checkmark	\times	×	52.4	84.3
	✓	×	\times	×	51.6	82.8
	×	×	×	×	50.0	81.9

Table 4. Unimodal accuracy comparison on MOSEI dataset.

Methods	w/o FD	w/ FD	
wiemous	Acc ₂ (%) / F1 (%)	Acc ₂ (%) / F1 (%)	
L only	81.2 / 81.4	82.7 / 82.5	
V only	58.2 / 52.2	62.8 / 60.0	
A only	53.4 / 54.0	64.9 / 62.5	
Mean	64.3 / 62.5	70.1 / 68.3	
STD	12.1 / 13.4	8.9 / 10.1	

Table 5. Ablation study of graph distillation (GD) on MulT.

Methods	CMU-MOSI						
	ACC_7	ACC_2	F1	ACC_7	ACC_2	F1	
	39.1						
MulT (w/GD)	39.4	82.2	82.2	51.0	82.3	82.5	
DMD (Ours)	41.9	83.5	83.5	54.6	84.8	84.7	

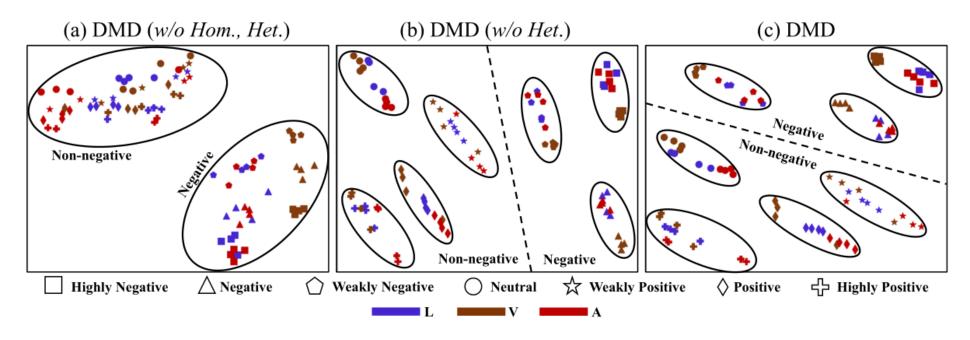


Figure 3. t-SNE visualization of decoupled homogeneous space on MOSEI. DMD shows the promising emotion category (binary or 7-class) separability in (c).

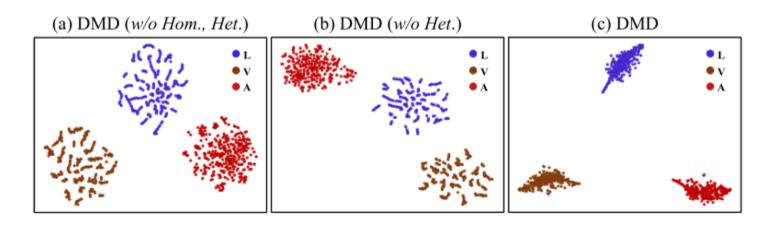
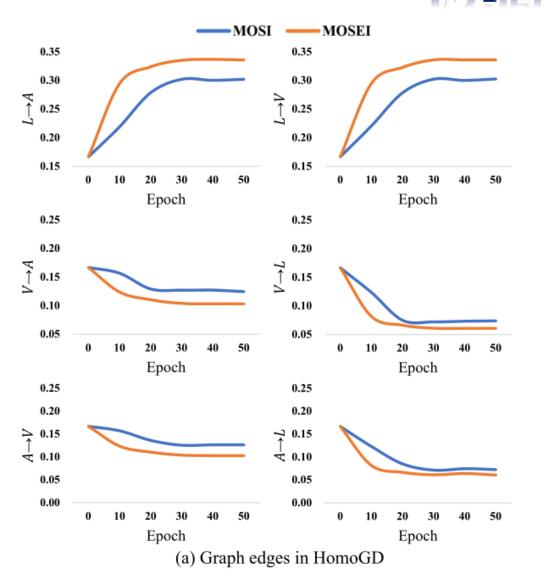
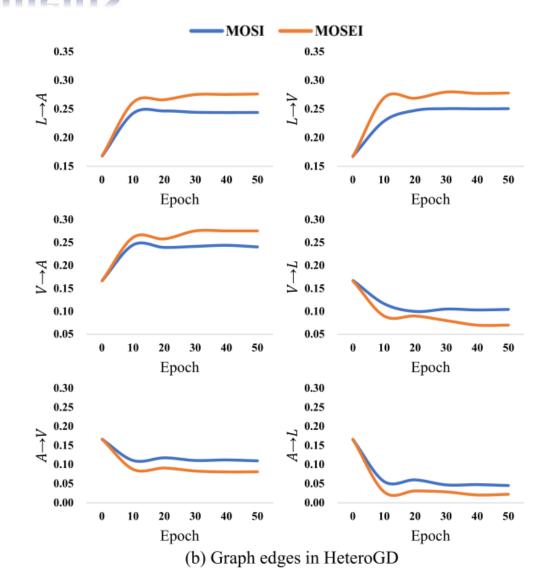




Figure 4. Visualization of the decoupled heterogeneous features on MOSEI. DMD shows the best modality separability in (c).

Thanks!